

Regge-plus-resonance predictions for kaon photoproduction from the deuteron

P. Vancraeyveld, L. De Cruz, J. Ryckebusch

Ghent University, Belgium, http://inwpent5.ugent.be

12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, College of William and Mary, Williamsburg, Virginia, 31.05 - 04.06.2010

Kaon production from the deuteron

Why?

- Extract the *n*(*γ*, *K*)*Y* amplitude: complementary information to establish nucleon spectrum
- Investigate nuclear-medium effects
- Study hyperon-nucleon potential
 - hypernuclear spectroscopy
 - final-state interactions in ${}^{2}H(\gamma, KY)N$

How?

- Elementary-production operator: RPR model
 - Describe $K^+ \Lambda$ and $K^+ \Sigma^0$ channels
 - Predictive power in other channels
- Dnp-vertex: relativistic
- Ignore FSI: focus on semi-inclusive kaon production

The Regge-plus-resonance model (I)

UNIVERSITEIT

The Regge-plus-resonance model (II)

The Regge-plus-resonance model (III)

The RPR strategy

- Construct Regge model for high-energy (=background) amplitude, and fit parameters to the available high-energy data.
- 2 Add resonance contributions (*N*^{*} and/or Δ^{*}) to obtain the full RPR amplitude, and fit parameters to the resonance region data.

Regge-plus-resonance results

K⁺Λ channel _{PRC73(2006)045207}

- *K*(494)- and *K**(892)-trajectories
- $S_{11}(1650), P_{11}(1710), P_{13}(1720), P_{13}(1900)$
- *missing* D₁₃(1900)

$K^+\Sigma^0$ channel $_{\tt PBC75(2007)045204}$

- *K*(494)- and *K**(892)-trajectories
- $S_{11}(1650), P_{11}(1710), P_{13}(1720), P_{13}(1900)$
- $D_{33}(1700), S_{31}(1900), P_{31}(1910), P_{33}(1920)$

Electroproduction PLB656(2007)186

EM form factors from Bonn CQM

Neutral-kaon production (I)

$p(\gamma, \mathcal{K}^+)\Sigma^0 \longrightarrow p(\gamma, \mathcal{K}^0)\Sigma^+$

- K(494)-exchange vanishes
- isospin relations at strong vertex $g_{K^{(*)0}\Sigma^+N^{(*)}} = \sqrt{2}g_{K^{(*)+}\Sigma^0N^{(*)}}$
- ratio of EM decay widths at EM vertex $\frac{\kappa_{K^{*0}(892)K^{0}(494)}}{\kappa_{K^{*+}(892)K^{+}(494)}} = -1.53 \pm 0.10$

The cross section is overpredicted by an order of magnitude!

Neutral-kaon production (II)

$p(\gamma, \mathcal{K}^+)\Sigma^0 \longrightarrow p(\gamma, \mathcal{K}^0)\Sigma^+$

- K(494)-exchange vanishes
- isospin relations at strong vertex $g_{K^{(*)0}\Sigma^+N^{(*)}} = \sqrt{2}g_{K^{(*)+}\Sigma^0N^{(*)}}$
- Fit ratio of EM coupling constants to available $K^0 \Sigma^+$ data $\frac{\kappa_{K^{*0}(892)K^0(494)}}{\kappa_{K^{*+}(892)K^+(494)}} = 0.05 \pm 0.01$

Nice description of data ($\chi^2/n.d.f. = 3.4$).

May 31, 2010

8/16

Neutral-kaon production (III)

Kaon production from the free neutron (I)

Resonance		SAID
		PRC53(1996)430
S ₁₁ (1650)	<u>^кN*п</u> ^к N*р	-0.22 ± 0.07
P ₁₁ (1710)	<u>^кN*n</u> ^к N*р	-0.29 ± 2.23
P ₁₃ (1720)	$\frac{\frac{\kappa (1)}{N^* n}}{\frac{\kappa (1)}{N^* p}}$	-0.38 ± 2.00
	$\frac{\frac{\kappa(2)}{N^* n}}{\kappa(2)}$	-0.50 ± 1.08
		Unknown
P ₁₃ (1900)	$\frac{\kappa_{N^*n}^{(1)}}{\kappa_{N^*p}^{(1)}}$	0.00 ± 2.00
	$\frac{\frac{\kappa (2)}{N^* n}}{\frac{\kappa (2)}{N^* p}}$	$\textbf{0.00} \pm \textbf{2.00}$

 $\mathsf{p}(\gamma, \mathcal{K}^+)\Sigma^0 \longrightarrow \mathit{n}(\gamma, \mathcal{K}^+)\Sigma^-$

- isospin relations at strong vertex $g_{K^{(*)+\Sigma^-N^{(*)0}}} = \sqrt{2} g_{K^{(*)+\Sigma^0N^{(*)+}}}$ $\sqrt{2} g_{K^{+\Sigma^-\Delta^{*0}}} = g_{K^+\Sigma^0\Delta^{*+}}$
- ratio of helicity amplitudes at EM vertex $\frac{\kappa_{nN^*}}{\kappa_{pN^*}} = \frac{\mathcal{A}_{1/2}^n}{\mathcal{A}_{1/2}^p}, \dots$

Kaon production from the free neutron (II)

$$\mathsf{p}(\gamma, \mathsf{K}^+)\Sigma^0 \longrightarrow \mathit{n}(\gamma, \mathsf{K}^+)\Sigma^-$$

- isospin relations at strong vertex
- ratio of helicity amplitudes at **EM** vertex

Uncertainty N^* helicity amplitudes restrains the predictive power of the RPR model PLB681(2009)428

Kaon production from the free neutron (III)

Kaon production from the deuteron: formalism (I)

Kaon production in RPR

Plane-wave impulse approximation

CD-Bonn [PRC63(2001)024001]

Gross-IIb [PRC45(1992)2094]

p (MeV)

$$= \overline{u}_{Y} \Gamma_{\mathsf{RPR}}^{\lambda_{\gamma}} \frac{m_{\mathsf{N}} + \not p_{\mathsf{N}'}}{m_{\mathsf{N}}^2 - p_{\mathsf{N}'}^2} \Gamma_{\mathsf{BC}}^{\lambda_{\mathcal{D}}} \mathcal{C} \overline{u}_{\mathsf{N}}^T$$

Relativistic Dnp-vertex

- Positive-energy part
 - L = 0 and L = 2 wave functions
 - Realistic NN-potential, e.g. CD-Bonn
- Negative-energy part
 - L = 1 wave functions
 - Relativistic Gross formalism

13/16

P. Vancraevveld

100 200 300

r(p) (GeV^{-3/2} 100

w(p) (GeV^{-3/2})

80

Kaon production from the deuteron: formalism (I)

Plane-wave impulse approximation

$$= \overline{u}_{Y} \Gamma_{\text{RPR}}^{\lambda_{\gamma}} \frac{m_{N} + \not p_{N'}}{m_{N}^{2} - p_{N'}^{2}} \Gamma_{\text{BC}}^{\lambda_{D}} \mathcal{C} \overline{u}_{N}^{T}$$

Relativistic Dnp-vertex

- Positive-energy part
 - L = 0 and L = 2 wave functions
 - Realistic NN-potential, e.g. CD-Bonn
- Negative-energy part
 - L = 1 wave functions
 - Relativistic Gross formalism

Kaon production from the deuteron: formalism (II)

Plane-wave impulse approximation

Elementary-production operator

- Semi-inclusive K^+ production = $K^+\Lambda + K^+\Sigma^0 + K^+\Sigma^-$
- Uncertainties *N** helicity amplitudes propagate!

Neutral-kaon production from the deuteron

Neutral-kaon production from the deuteron

Conclusions

- Regge-plus-resonance (RPR) approach
 - fixes Regge background at high energies
 - adds N^* 's and Δ^* 's in the **resonance region**
- Kaon production on free nucleon
 - threshold $\leq E_{\gamma}^{lab} \leq 16 \, \text{GeV}$
 - economical description of $K^+ \Lambda$ and $K^+ \Sigma^0$ channels
 - predictive power
 - K⁰ production
 - *K* production from the neutron
- Kaon production on deuteron
 - Dnp-vertex is under control
 - elementary-production operator dominates (helicity amplitudes!)
 - Good predictions for semi-inclusive K⁰ production data

Extra

Neutral-kaon production from the deuteron

UNIVERSITEIT GENT

The issue of double counting...

Duality

energy-averaged sum over all *N**'s equals the sum over all t-channel Regge-trajectory echanges

Evaluate double counting

- Refit BG and resonances simultaneously
- effect on BG and full RPR is modest
- estimated effect on resonance parameters is 20 %

3/3

